
Journal of Applied Mechanics and Technical Physics, Vol. 43, No. 3, pp. 354–361, 2002

ULTIMATE KINEMATIC CHARACTERISTICS

OF COMPOSITE SOLIDS ACCELERATED BY A MAGNETIC FIELD

UDC 583.4+533.95S. V. Stankevich and G. A. Shvetsov

The present paper considers the ultimate (under heating conditions) kinematic characteristics of com-
posite solid bodies accelerated by unsteady magnetic-field pressure. The accelerated sheet comprises
two layers: a layer of a composite material consisting of a mixture of two materials with different
electrothermal properties and a homogeneous material layer. The electrical properties of the compos-
ite layer with the coordinate are varied along the coordinate by changing the volume concentration of
its constituent materials. For an exponential magnetic field rise, an analytical solution is obtained
for the problem of determining the optimum distribution of the volume concentration of the composite
constituents for which there is a maximum increase in the ultimate velocity of the sheet. Numerical
simulation showed that the distribution of the volume concentration obtained from analytical relations
is also nearly optimal for pulse shapes of the accelerating magnetic field different from exponential
ones. The possibility of considerably increasing the ultimate velocity through the use of composite
layers compared to the ultimate velocities for the homogeneous materials constituting the composite
is shown analytically and numerically.

Introduction. One factor limiting maximum velocities during electromagnetic acceleration of solids is the
heating of conductors by the currents flowing in them to temperatures above the melting point of the material.
This can lead to loss of the mechanical strength of the conductors, change of their shape, and ultimately failure.
The requirement of no melting of conductors during acceleration imposes restrictions on the maximum permissible
amplitudes of the accelerating magnetic fields, thus limiting the maximum velocity to which a conductor of given
mass can be accelerated [1].

In some papers (see, e.g., [1–4]), it was noted that the use of heterogeneous conductors with electrical
conductivity increasing discretely or continuously with distance from the surface can decrease their local heating
considerably.

In this connection, it is of interest to determine the ultimate kinematic characteristics of sheets containing a
layer with electrical conductivity increasing continuously in the direction of magnetic-field diffusion. The optimum
law of variation of electrical conductivity in this layer can be found from the natural condition that at the end of
acceleration, the temperature at each point of this layer reaches a certain critical value. A similar formulation of the
problem of increasing critical magnetic field by using composite materials was considered in [2], where an optimum
profile of electrical conductivity variation was obtained for a layer in contact with a conducting homogeneous half-
space. In this paper, however, the heat capacity (in contrast to electrical conductivity) was considered constant
at each point of the layer. Generally, variation of electrical conductivity, for example, by changing the volume
concentration of well- and poorly conducting particles results in variation of the averaged thermal properties of
the material from point to point. In addition, unlike in problems related to magnetic-field generation, in problems
of electromagnetic acceleration of conductors, it is necessary to take into account the finite dimensions of the
conductors and the variation of the average density of the material and to specify the amplitude and duration of
the accelerating magnetic field so that the maximum velocity is reached at a specified acceleration distance.
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Fig. 1

Formulation of the Problem. We consider the acceleration of a conducting flat sheet by unsteady
magnetic field pressure. On the sheet surface, the time dependence of the magnetic field H0(t) is given by the
relation

H0(t) = Hsh0(τ) (τ = t/t0),

where Hs and t0 are arbitrary parameters that specify the amplitude and characteristic duration of the accelerating
magnetic field pulse and h0(τ) is an arbitrary function. Considering that at the initial time, the velocity of the
sheet V = 0, the velocity and the distance L at an arbitrary time can be obtained from the relations

V =
µH2

s t0
2ρ̄d

v(τ), L =
µH2

s t
2
0

2ρ̄d
l(τ), (1)

where v(τ) =

τ∫
0

h2
0(τ) dτ , l(τ) =

τ∫
0

v(τ) dτ , and ρ̄ =
1
d

d∫
0

ρ(x) dx are the dimensionless velocity, acceleration

distance, and the average density of the sheet, respectively.
Generally, we assume that the accelerated sheet of thickness d comprises two layers in contact: a compos-

ite layer of thickness dc consisting of a mixture of two materials (first and second) with different electrothermal
properties and a homogeneous layer of thickness d2 made of the second material (Fig. 1). Below, the subscript and
superscript 1 and 2 denote parameters of the first and second materials, respectively. Let the electrical conductivity
of the second material be higher than the electrical conductivity of the first material (σ2 > σ1) and let the electrical
conductivity at points of the composite layer be changed as a result of change in the volume concentration ε(x) of
the second material (the x coordinate is reckoned from the sheet surface in contact with the field). Furthermore, the
characteristic sizes of the composite particles are small so that it is possible to ignore the variations of the magnetic
and thermal fields due to the discrete dependence of the electrothermal properties of the composite material on the
coordinates. We note that the jumps of current density and Joule heat release at the interfaces between particles
with different electrical conductivity can remain finite for any particle sizes, but a decrease in particle size due to
heat conduction ensures local temperature equalizing. Thus, the averaged properties of the composite material are
assumed to depend continuously on the x coordinate according to the volume concentration distribution ε(x). In
this case, at the interface between the composite and homogeneous layers, we set ε = 1.

For an arbitrary composite material, the density ρ and heat capacity C per unit volume can be obtained
from the relations

ρ(x) = ρ1(1− ε(x)) + ρ2ε(x), C(x) = ρ1c1(1− ε(x)) + ρ2c2ε(x). (2)

At the same time, the dependence of the averaged electrical conductivity σ on the volume concentration ε can
be determined only for a composite material of known structure or experimentally. Below, we assume that the
dependence σ(ε) is known.
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We ignore the temperature dependence of electrothermal properties, the compressibility of the materials, and
heat transfer between the sheet and the ambient medium. Then, the magnetic-field and temperature distributions
in the sheet can be obtained by solving the following magnetic-field diffusion and heat-conduction equations:

λ2 ∂h

∂τ
=

∂

∂ξ

1
σ̃

∂h

∂ξ
, λ2C̃

∂θ

∂τ
= γ

∂

∂ξ
k̃
∂θ

∂ξ
+

2
σ̃

(∂h
∂ξ

)2

(3)

subject to the initial and boundary conditions

θ(ξ, 0) = 0, h(ξ, 0) = 0, h(0, t) = h0(τ), h(ξd, t) = 0,
∂θ

∂ξ

∣∣∣
ξ=0

=
∂θ

∂ξ

∣∣∣
ξ=ξd

= 0. (4)

In Eqs. (3) and (4), τ = t/t0, ξ = x/xs, h = H/Hs, θ = 2ρ2c2∆T/(µH2
s ), ρ̃ = ρ/ρ2, C̃ = C/(ρ2c2), σ̃ = σ/σ2 are

dimensionless variables, ξd = d/xs, γ = µσ2k2/(ρ2c2), λ2 = µσ2x
2
s/t0, and ∆T = T−T0 is the temperature variation

in the sheet (T0 is the initial temperature and k2 is the thermal conductivity; the length scale xs can be chosen
arbitrarily). Because for most conductors, γ < 10−2, it follows that in a macrodescription of the Joule heating
process, we can ignore heat conduction, setting γ = 0 in the second equation of system (3).

Let T∗ be the lowest among the melting points of the materials constituting the composite layer. It is
required to find the dependence ε(ξ), the maximum possible field amplitude Hs, the duration of the action t0,
and the thickness of the composite layer dc for which a sheet of thickness d has maximum velocity at specified
acceleration distance L provided that the temperature at each point of the sheet does not exceed T∗ during the
entire acceleration time. In the case considered, using the distribution θ(ξ, τ, λ) obtained from the solution of system
(3) and the definition of the dimensionless temperature θ (5), we can obtain the maximum possible value of Hs for
which the maximum temperature at a certain point of the sheet reaches T∗ at an arbitrary time τ :

Hs =
√

2∆Q∗/(µθmax(λ, τ)). (5)

Here ∆Q∗ = ρ2c2(T∗ − T0) and the maximum dimensionless temperature θmax(λ, τ) is defined by relation

θmax(λ, τ) = max
06ξ6ξd
06τ ′6τ

θ(λ, ξ, τ ′). (6)

Substitution of the magnetic-field amplitude (5) into the kinematic relations (1) yields

V

d
=
µσ2∆Q∗

ρ̄

v(τ)
(λξd)2θmax(λ, τ)

,
L

d3
=

(µσ2)2∆Q∗
ρ̄

l(τ)
(λξd)4θmax(λ, τ)

. (7)

The dependence of the ultimate sheet velocity on sheet thickness in parametric form for any acceleration
distance can be found from relations (7) using solutions of Eqs. (3) for several values of the parameter λ.

Because the parameters on the left and right sides of Eqs. (7) are independent of each other, the dependence
V (d) obtained for an acceleration distance L can be converted to the dependence V ′(d′) for an acceleration distance
L′ = aL using the transformations V ′ = a1/3V and d′ = a1/3d.

Analytical Solution. The optimum distribution of the volume concentration ε(ξ) that ensures uniform
heating can be obtained in analytical form using the steady-state solutions of system (3) admissible for h0(τ) = eτ .
The steady-state solutions are close to the true solutions (obtained subject to the initial conditions) if the acceleration
time far exceeds the characteristic times of the transient processes involved in the establishment of the magnetic
field, i.e., for τ � 1. If in (3) we set h(ξ, τ) = eτh(ξ), θ(ξ, τ) = e2τθ(ξ), and γ = 0, we obtain equations for
steady-state distributions of temperature and magnetic field in the sheet. The magnetic-field distribution in the
sheet can be obtained by solving the boundary-value problem

(h′(ξ)/σ̃)′ = λ2h(ξ), h(0) = 1, h(ξd) = 0, (8)

and the temperature distribution is given by the expression

θ = (h′(ξ)/λ)2/(σ̃C̃). (9)

Here and below, the prime denotes differentiation with respect to the variable ξ. If the temperature in the composite
layer has the same value θc for any ξ 6 ξc, then, according to (9),

h′(ξ) = λ
√
θc

√
σ̃C̃. (10)
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Substitution of this expression into (8) yields

h(ξ) = −
√
θcy
′/λ, (11)

where y =
√
C̃/σ̃ is an unknown function. Differentiation of (11) using (10) gives

y′′ = λ2yσ̃. (12)

Equation (12) can be used to find y(ξ) if the dependence σ̃(y) is known. Using the dimensionless expression
for the volumetric heat capacity (2), we obtain

[ε+ C̃1(1− ε)]/σ̃(ε) = y2. (13)

Solving this equation with respect to ε (it is assumed that this can be done for a certain range of ε), we obtain the
dependence ε(y2), and, hence, the dependences ε(y2), σ̃(y2), C̃(y2), and ρ̃(y2). Thus, for example, if the composite
layer has a layered or fibrous structure (the direction of the fibers coincides with the direction of the current), then,
σ̃ = ε+ (1− ε)σ̃1. In this case, we obtain

ε(y2) =
C̃1 − y2σ̃1

y2(1− σ̃1) + C̃1 − 1
, σ̃ =

C̃1 − σ̃1

y2(1− σ̃1) + C̃1 − 1
. (14)

Using the solution of Eq. (8) for the magnetic-field distribution in the homogeneous layer and taking into account
the continuity condition for the electric and magnetic fields at the interface between the composite and homogeneous
layers, we obtain the first integral of Eq. (12):

y′2 = λ2

( y2∫
1

σ̃(y2) dy2 +
1

θ0
max(λξ2)

)
. (15)

Here θ0
max(λξ2) = (cosh λξ2/ sinh λξ2)2 is the maximum temperature of the homogeneous layer.
Substituting the expression for the derivative of the function y (15) into (11) and using the boundary

condition h(0) = 1, we obtain the dimensionless temperature in the composite layer:

θc(y2
0 , λ ξ2) =

( λ
y′

)2

=

( y2
0∫

1

σ̃(y2) dy2 +
1

θ0
max(λξ2)

)−1

, (16)

where y0 = y|ξ=0.
Substituting the expression of electrical conductivity for the composite layer (14) into the integral entering

into (16), we obtain

θc(y2
0 , λξ2) =

( C̃1 − σ̃1

1− σ̃1
ln
(y2(1− σ̃1) + C̃1 − 1

C̃1 − σ̃1

)
+

1
θ0

max(λ ξ2)

)−1

. (17)

We note that formulas (16) and (17) are also valid for sheets consisting only of a composite layer (ξ2 = 0 and
1/θ0

max(λξ2) = 0) and in the case of homogeneous layers of infinite dimensions (ξ2 →∞ and 1/θ0
max(λξ2) = 1). For

a homogeneous layer of finite dimensions, we can set xs = d2. Then, ξ2 = 1 and ξd = ξc + 1.
Separation of the variables in (15) and integration yield the dependence y(ξ) in the form of the inverse

function

ξ(y, y0, λξ2) =

y0∫
y

dy

y′(y, λξ2)
. (18)

The thickness of the composite layer can be determined by setting in (18) y = 1 [ξc(y0, λξ2) = ξ(1, y0, λξ2)]. The
volume-concentration distribution for the first material in the composite layer ε(ξ, y0) is given in parametric form
by relations (13) and (18) with y varying from 1 to y0.

Using (18), we obtain the average density of the sheet:

ρ̄(y0, λξ2) =
1
ξd

ξd∫
0

ρ dξ =
ρ2

ξc + ξ2

( y0∫
1

ρ(y) dy
y′(y, λξ2)

+ ξ2

)
. (19)
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Fig. 2. Fig. 3.

In the homogeneous layer, the maximum temperature is reached at the interface with the composite layer.
Since the function σ̃ is continuous at the interface between the layers (at the interface, ε = 1), the temperature θ
also remains a continuous function at this interface. Consequently, θc is the maximum temperature in the sheet
and, according to the definition (6), θmax = θce2τ .

Substituting the expressions for the maximum temperature θmax into the kinematic relations (7) taking into
account (16), the average density of the sheet (19) and the dimensions of the sheet (18), and v(τ) = e2τ/2 and
l(τ) = e2τ/4, we obtain the dependence of the ultimate velocity of the sheet V (y0, λξ2) on its thickness d(y0, λξ2)
in parametric form

V (y0, λξ2) =
(µσ2L

2

( ∆Q∗
ρ̄(y0, λξ2)λξd(y0, λξ2)θc(y0, λξ2)

)2)1/3

,

(20)

d(y0, λξ2) =
(4Lρ̄(y0, λ ξ2)λ4ξ4

d(y0, λξ2)θc(y0, λξ2)
(µσ2)2∆Q∗

)1/3

.

An analysis of relations (16)–(20) shows that for a sheet consisting of a composite and homogeneous layers
(ξ2 > 0), the dependence V (d) (L = const) can be obtained by varying the parameter λ from 0 to ∞ for any value

of y0 (1 6 y0 6
√
C̃1/σ̃1) admissible for a given pair of materials but the maximum velocity for a sheet with fixed

d is attained for the maximum value ymax = max
06ε61

y0 = y0

∣∣∣
ε=0

=
√
C̃1/σ̃1, i.e., for zero concentration of the second

material on the surface of the composite layer.
The curve of V (d) for λ → 0 (ξ2 > 0 and y0 = ymax) begins at a certain point V0 = V (ymax, 0), d0 =

d(ymax, 0) > 0, determined from relations (20). At this point, the thickness of the composite layer is much greater
than the thickness of the homogenous layer (ξc/ξd → 1). For sheet dimensions d 6 d0, the sheet consisting only of
a composite layer (ξ2 = 0) has maximum velocity. In this case, relations (20) do not depend on the parameter λ
and the dependence V (d) can be obtained for 1 6 y0 6 ymax.

Figure 2 shows curves of ultimate velocity versus sheet thickness calculated using the above relations. Curves
3–5 refer to a sheet consisting of a composite layer (Fe + Cu) and a homogeneous layer (Cu). Curves 1 and 2 refer
to homogeneous sheets (Cu and Fe, respectively). For curves 4 and 5, the electrical conductivity of iron is decreased
by a factor of 10 and 100, respectively. The calculations were performed for the electrothermal parameters of the
materials averaged over the temperature range from room temperature to the melting point of copper. Curves 3–5
have inflections at the points d0(ymax). The segments of the curves before the points of inflection correspond to the
sheet consisting only of a composite layer. The segments of the curves behind the points of inflection correspond
to the sheet consisting of a composite–homogeneous layer. On curve 3, the points correspond to a change in the
volume concentration of copper by 0.1 for d 6 d0 or to a change of the relative thickness of the composite layer
ν = ξc/ξd by 0.1 for d > d0. For a certain thickness of the sheet in the neighborhood of the point of inflection, up to
three different distributions of ε(x) can exist that ensure uniform heating. The maximum ultimate velocity of the
sheet containing an optimized composite layer is about a factor of 2.1 and 2.3 higher than the maximum ultimate
velocity for homogeneous sheets of copper and iron, respectively.

Figure 3 shows the optimum distributions of copper concentration in a composite layer consisting of copper
and iron. These distributions correspond to the sheet thicknesses marked by points in Fig. 2. The curves with
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zero surface concentration correspond to the case of acceleration of sheets consisting of a composite layer and a
homogeneous copper layer. The numbers in Fig. 3 correspond to the relative thickness of the composite layer. The
curves with nonzero surface concentration of copper were obtained for a sheet consisting only of a composite layer.
It should be noted that for composite layers of relative thickness ν < 0.7, the optimum profiles of copper distribution
in the composite layer practically do not differ from each other.

It follows from Fig. 3 that as the thickness of the sheet decreases, the composite layer becomes similar in
properties to a homogeneous sheet of the material with higher electrical conductivity (second material). In this
case, the curve of V (d) (Fig. 2) approaches the asymptote to a “thin sheet” V/d = const [5] for the second material.
But the ultimate velocity of the composite sheet enters this asymptote for larger values of d than those for the
homogeneous sheet. Accordingly, its maximum ultimate velocity can be much higher than the maximum ultimate
velocity of the homogeneous sheet. With increase in the thickness of sheets containing a composite layer of any
pair of materials, the ultimate velocity always decreases, even in the case of artificial decrease in the electrical
conductivity of the first material (curves 4 and 5) in Fig. 2. However, for great d, the ultimate velocity of sheets
containing a composite layer is higher than the ultimate velocity of homogeneous sheets made of the materials
constituting the compact. With decrease in σ̃1, the increase in ultimate velocity becomes more considerable. The
ratio vr of the ultimate velocity of a sheet with a composite layer to the ultimate velocity of a homogeneous sheet
can be calculated for sheets having identical masses per unit areas and for identical acceleration distances.

For rather thick homogeneous sheets, the following asymptotic expression for the ultimate velocity is valid [1]:

V = ψ
√

∆QpL/(ρpdp). (21)

Here ψ is a dimensionless parameter that depends only on the shape of the accelerating field pulse [for h0(τ) = eτ ,
ψ = 1]; the subscript p refers to the parameters of the homogeneous sheet. Using relations (20) and setting in (21)
ρpdp = ρ̄d, we have

vr =
√

∆Q∗/∆Qp
√

1/θc.

We note that vr does not depend on the mass of the sheet and acceleration distance. In a layered composite
material, the quantity θc is given by expression (17). In this case, assuming that σ2 � σ1 and that for rather thick
sheets, 1/θ0

max(λξ2) ≈ 1, we obtain

vr =
√

∆Q∗/∆Qp
√

(ρ1c1/(ρ2c2)) ln (σ2/σ1) + 1. (22)

From this relation, we can estimate the increase in the ultimate velocity for a sheet containing an optimized compos-
ite layer of any two materials compared to the ultimate velocity for a homogeneous sheet of any of these materials.
For a sheet containing a composite layer of iron and copper, we obtain the following ratios: V(Fe+Cu)–Cu/VCu = 1.95
and V(Fe+Cu)–Cu/VFe = 1.38. From (22) it follows that the velocity ratio vr increases slightly with decrease in
the electrical conductivity of the first material constituting the composite layer. The electrical conductivity of the
materials can be decreased by the addition of small amounts of various dopes without significant changes in the
density and heat capacity of the composite material. Thus, if the electrical conductivity of iron is decreased by
a factor of 100, the ratios given above are equal to 3.23 and 2.28, respectively. From formula (22) it follows that
vr → ∞ as σ1 → 0 [formula (26) is obtained for d → ∞]. However, as follows from Fig. 2, for a sheet of fixed
thickness, the relative increase in velocity is always finite.

Numerical Solution. The ultimate (for heating conditions) kinematic characteristics of the sheets were
calculated by numerical solution of Eqs. (3) using the model of a layered composite layer in which the average
electrical conductivity and the volume concentration of the high-conducting material are linked by relation (14).
For a given pair of materials and a fixed relative thickness of the composite layer ν, we obtained the optimum
distribution of the relative volume concentration of the well-conducting material in the composite layer ε(ξ) and
the corresponding dependences ρ̃(ξ), c̃(ξ), and σ̃(ξ). By numerical calculations using the above dependences and
a specified function h0(τ) for several values of the parameter λ, we determined the maximum temperature in the
sheet at the time of cessation of acceleration τ . Next, the ultimate velocity and sheet thickness were determined
for a specified acceleration distance using the kinematic relations (7).

Calculations for an exponentially increasing accelerating magnetic field showed that the effect of the transient
processes involved in the establishment of a steady-state field distribution in the sheet could be ignored for τ > 3.
In this case, the error of velocity calculations using the approximate analytical approach does not exceed 2%.
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Fig. 4

The ultimate velocity was also calculated for the cases where the time variation of the accelerating field h0(τ)
was specified by the functions τ , sin (πτ/2), and τe1−τ .

Figure 4 shows calculated ultimate velocity versus sheet thickness for a sheet containing a composite layer of
copper and iron for an acceleration length of 0.1 m and h0(τ) = τ . Curve 1 is obtained by analytical solution, and
curves 2–5 are the results of numerical calculations for the different relative thicknesses of the optimized composite
layer ν. Curve 2 refers to ν = 1 for ε(0) = 0.45 and curves 3–5 refer 1, 0.5, and 0.3, respectively, for ε(0) = 0.
The points on curve 1 correspond to sheets with the same values of ν and ε(x/d) that were used in numerical
calculations. The velocity corresponding to the maximum points on curves 2–5 is close the analytical velocity of
the sheet (curve 1) but the maximum velocity is attained for sheet dimensions 5–15% larger than the dimensions
obtained in analytical calculations. Calculations for h0(τ) = sin (πτ/2) and h0(τ) = τe1−τ , and relative acceleration
time τ = 1, showed that the curves of ultimate velocity versus sheet thickness coincide with an accuracy of a few
percent with curves 2–5 shown in Fig. 4, which were obtained for h0(τ) = τ .

Conclusions. From the analysis performed it follows that the use of a composite material with electrical
conductivity increasing in the direction of magnetic-field diffusion can increase the ultimate (for heating conditions)
kinematic characteristics of accelerators. Thus, the ultimate velocity of a sheet containing a composite layer of iron
and copper is about twice that of homogeneous sheets of iron and copper. When the electrical conductivity of iron
decreases by a factor of 100, the ultimate velocity increases by a factor 3.

For a given pair of materials constituting a composite sheet, the optimum profile of distribution of the
high-conducting material in the composite layer depends on the required sheet thickness and specified acceleration
distance. A procedure for obtaining the optimum profile and structure of the sheet is described for the case of an
exponentially increasing accelerating magnetic field.

Numerical simulation showed that the analytical optimum structure for a sheet of given thickness is also
nearly optimal in the case where the time dependence of the magnetic field is specified by different functions [in
particular, h0 = τ , h0 = sin (πτ/2), and h0(τ) = τe1−τ for τ = 1] but the sheet thickness is 5–15% greater.

The analysis showed that increasing the ratio of electrical conductivities of the materials constituting a
composite sheet, one can achieve a considerable increase in ultimate velocity compared to homogeneous sheets.
Interesting results can be obtained through the use of combinations of conducting and nonconducting materials.
However, in this case, to ensure microuniform heating of the composite material, it is necessary to decrease the
characteristic particle size in the composite material and(or) to use a material with high thermal conductivity as
an insulator.

The analysis performed does not cover all aspects of the use of composite materials as current-carrying
elements of magnetically driven projectiles. In particular, the thermomechanical and strength properties of the
composite constituent materials should be chosen in a special manner to ensure the integrity of the projectile
during acceleration.
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